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Approach to Multiple Energy X-Ray Holography (MEXH)

L.Fonda, University of Trieste and ICTP, Trieste (Italy)

The very original MEXH method proposed, and successfully applied experimentally, by the group of Fadley and Materlik [1,2],  requires: 

1. The utilization of a monochromatic tunable synchrotron radiation X-ray beam.

2. The determination, as a function of the incoming photon momentum and energy, of the electromagnetic field at the position of a specific atom A inside a material cluster.


The electromagnetic field is obtained at the atom "detector" A as the coherent superposition of the wave coming directly from the synchrotron radiation source (reference wave) with the waves which reach A after having been scattered by its neighbors (object wave). An hologram is obtained via the measurement of the total intensity of fluorescence emitted by A.


In order to get the formulas describing this holographic method, we have chosen a quantum electrodynamical (QED) approach which is the closest to the physical interpretation of the process [3].  Let us consider the atom n of the cluster.  The four-vector electromagnetic potential operator A((x) is splitted as usual as:
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(1)

i.e., into a "radiation" quantum field A(rad(x) (which includes the incident e.m. wave) and a prescribed c-number field A(ext(x), representing the interactions providing the binding of the electrons to the atom n. A(rad(x) satisfies the Maxwell equation:
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where the Dirac spinors ( and 
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Y

((+(0 describe the quantum electron field:
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(3a)
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(3b)

SFext is the Feynman propagator for the electron in an external field:
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(4)

Also (ext satisfies (4) with the ((4) -function replaced by zero.

Using (3.a,b) and dropping terms of order higher than e2 (for MEXH we need only single scatterings; we forget about radiative corrections) we get:
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(5b)

We have now to transform the QED operator equation (5a) into numbers. The MEXH program describes a process which exhibits one photon in the initial state while in the final state one photon is observed, and therefore absorbed, at the position of the atom "detector" A. In order to obtain the required coherence, the process must be elastic. Therefore we apply equation (5a) to the state vector |(c(n)(|li( describing the initial photon i  and a core level electron of the considered atom n, and then take the projection of the all thing on the state vector (0|((c(n)| ((0| is the photon vacuum). Indicating by (( the corresponding matrix elements, we get:
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(6)

Be now A(ref(x) the reference wave. It satisfies: A(ref(x)=0. We require A0ref(x)=0 and (iAiref(x)=0, as proper for a pure radiation field. For Airef(x) we then have:

Aref(x) = ( exp( i k(x - i kt),      ((k = 0
(7)

Airef(x) represents the initial photon of momentum k, energy E=k(|k| and unit polarization vector (.

We then integrate the wave equation (6) by requiring (A(rad(x)(t((=A(ref(x). Keeping again only single scattering contributions and adding up the coherent contributions from the N neighbors of A, we get:
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(8)

where DR(x-x') is the retarded propagator for a free e.m. wave; it satisfies: DR(x-x')=((4)(x-x'), DR(x-x')=0 for t'>t. The quantity to be observed at A is actually the electric field strength Ei=-(0Ai-(iA0 (j=1,2,3). From (8) we see that we can drop -(iA0 since it behaves like 1/R2 (R is the distance of the atom A from a scatterer). In the following, we can then consider (8) only for ((j=1,2,3.

Since in our case both (K(((x,x')((n) and DR(x-x') depend on the difference of the time labels, it is possible to go over to a stationary description:

Defining Airad(k,x)(exp(ikt)(Airad(x)(, and introducing the object wave, we obtain:

Airad(k,x) ( (i exp(i k(x)+ Aiobj(k,x)
(9a)
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(10)

The angular momentum representation of (9) is obtained using well known re-expansion formulas. Taking x = 0  for the position of the atom A, one obtains (Rn is the position vector of the atom n):
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(11a)

g 0,L(R) = - i (4()1/2YL(R)hl(+)(kR)
(11b)

(fi(n))LnLi = (jlnYLn|(e2/4()Ki(n)|jliYLi(
(11c)

having defined the angular momentum states |jlYL( as ( r | jlYL( ( jl(kr)YL(r).

An approximation often used is the so called plane wave approximation. It consists in taking the far field expression for the photon Green's function. For (11a) we get:
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(12b)

having defined by hkn ( -hkRn the momentum of the photon which reaches x = 0 after having been shot by the atom n. 

To complete our program we still have to write the kernel Ki(n)(k,x',x'') in a more workable form. For that purpose we need to evaluate the electron propagator SFext. Taking into account the Pauli principle, for the atom n, we can write:
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(13)

In (13) the sum runs over all unoccupied levels of the atom n including the continuum. (i(n) and 
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 are c-number ("positive" energy) solutions of the Dirac equation. 

For Ki(n)(k,x',x'') we easily obtain (Ec is the energy of the core level involved):
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(14)

The evaluation of the matrix elements appearing in (14) follows standard procedures.

________________________________________________
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